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What is feature selection

Features Model Output
Ssubset approximation
X* Y*
S F(X*)=Y*
Input X Output Y
features > OBJECT —

Learning sample: pairs (X,Y") i=1,...N



What is feature selection

feature selection, also known as variable
selection, attribute selection or variable
subset selection, is the process of

selecting a subset of relevant features for

use iIn model construction



Example of feature selection

Let (X,Y) be a vector of two independent features.

Distribution of feature X does not depend on hypothesis H, or
H,.

Distribution of feature Y do depend on hypothesis H, or H,.

Feature X is irrelevant in

hypothesis H, vs H, testing.



Bivariate distribution
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In the report we describe a method of
DISTRIBUTIONS CONTRASTING

which means selection of feature subset to
maximize differences between
distributions under different hypothesis —
Inclass distributions



Why do we need to select features

* many machine learning algorithms don't
operate well on the big amount of features

* as the number of features increases the
algorithm run-time grows dramatically

» statistical accuracy of the algorithm
decreases in the case of big number of
features and the overfitting problem can
arrize



General setting. Loss function.

MODEL

Input X Output Y*

features > f (X) —

L(y,Y")=L,(Y,X) Loss function



General setting. Average risk.

M(f): EX,Y(Lf(Y9X))

Examples

Classification 1 (v, X):[(Y:f(X))
Regression L, (v,X)=(v-f(x))
Density estimation L, (X )——lnf( )



General setting. Empirical risk.

Me(f)z%ZI:Lf(Y",X")

Examples
Classification #errorf#examples
1 &y, ANV
Regression ;;(Y -/lx')

Density estimation —glnf(X")



Average and Empirical risks In
Distributions contrasting

X — vector of features, Y={0,1} — class label
(hypothesis label)

TASK: select the features subset for
better classification (hypothesis testing)



Average risk In
Distributions contrasting

px|H,) plx|H,) conditional distributions

ON OF approximations for conditional distributions

Define average risk for approximations ¢, and ¢, as

M(¢o»¢1): _Ex,y ()/ In §Do(x)+ (1 — y)ln D, (x))



Average risk In
Distributions contrasting

It is easy to see, that

M(py.0,)=—E, (yIng,(x)+(1-y)ng, (x)
= ](§009§01)_Ex,y(ylnp(x | H1)+(1—y)lnp(x | Ho))
where

.(x) (x)
’(%’(”I)Z_Ex’y(ylnpgcH1)+(1_y)1“ p((cho)]

which shows how big is divergence between two pairs of
distributions

@o(x)ap(x”_]l) and ng(X),p(x|HO)




Average risk In
Distributions contrasting

Small divergence /(¢,,¢,) means that approximation @,(x) is
close to inclass distribution p(x|H,) and approximation ¢,(x) is
close to in class distribution p(x|H;). So, these approximations

are not good for classification.

M(§009§01) ooy 2 max

equivalent

](§009§01) ey 2 max

Y — class of different features sets distributions



Average risk maximization in
Distributions contrasting

Distribution contrasting task: find such a features set F,
that approximations ¢,(x) and ¢,(x), produced using these
features, deliver maximum for average risk

max M(gpo,gpl) —> max
Po-pr1€¥p

here

LIJ - class of distributions approximations ¢,(x) and
F

®4(x), produced using features from set F



Empirical risk maximization In
Distributions contrasting

We substitute this problem with empirical risk maximization

max Me(goo,gol) —> max
0.1 €Y F

here

LIJ - class of distributions approximations ¢,(x) and
F

@,(X), produced using features from set F



Average risk vs Empirical risk

If we know that with a given probability

Sup ‘M(gﬂoa%)_Me(gﬂoa%)‘ < g(\PF)

P .1 €¥r
then with the same probability for any ¢,(x) and @,(x) in \{-’F

Me(§009¢1)_8(\{1F)<M(§003§01)

and we can maximize the penalized empirical risk

Me(goOﬂgol)_g(\PF) F 2 max




What distributions approximations @,(x)
and ¢,(x) use in distributions contrasting
problem

and

how to calculate the penalty term 8(‘PF)?



Distributions approximation in
Distributions contrasting

For inclass distributions approximation we
use Bayesian histograms

ng(l) n +1

Zk:nj+k
j=1

n. —number of sample elements in j-th bin

kK — number of bins in histogram



Distributions contrasting

Loss function

L, (x,y)=-yng;(x)-(1-y)’(x)

Do »P1

Average risk

Mgl )=-E, (ying}(x)+(1-y)ng! (x))
Empirical risk for Bayesian histograms

Me(qofi,cof’)}l iz i(milnqofi(i)wlncof(i))
0 1 i=l




Rademacher penalty term

General formula

I < i v
R=sup—Y 5L, (v, x')
7|V

Formula in distribution contrasting problem

R= sup lJlrl [25 lnq)o +Z5Olnq)1 )]

0.0l ¥

0 1 Independent random variables with equally probable values
050,50 1and +1



Main inequalities

For the class of functions uniformly bounded by a
constant U for all £>0 it holds (Koltchinskii, 1999)

P{sgp‘M (go)— M, (go)‘ > 2R+ %} < exp(— gj

From this we write for distribution contrasting
problem that with probability not less than 1-n the
next inequality is true

3—2In7n In(l, +1, + k)
[, +1

M(qogaqolb)>Me(§D§>§D1b)_2R_



Feature selection by distribution
contrasting algorithm

1. Order features from 1 till d (total number);

2. For k changing from 1 till d calculate

— k -fold Bayesian histogram ¢*,(x) for one class
sample and histogram ¢X,(x) fpor the other class
sample;

— calculate empirical risk value;

— calculate value for Rademacher penalty term. It is
done analytically;

— by formula calculate lower bound for mean risk;

3. Take as optimal the set of features
corresponding to k for which the lower bound
for mean risk is maximal.



Classification states of real process

Data

* Time records of 10 parameters

« Two states labeled by experts. 562 points in the first
class, 268 points in the second class

Task

Find a set of parameters for reliable
classification of the process state
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Ordering

Find a parameter with the maximal value of
empirical risk. Fix it as #1.

Iterate pairs, composed by #1 and one from the
rest parameters. Find a pair with the maximal
value of empirical risk. Fix new parameter as #2.

Iterate triples, composed by #1, #2 and one from
the rest parameters. Find a triple with the
maximal value of empirical risk. Fix new
parameter as #3.

Continue till order all parameters.



Empirical risk

15 25

S)
|

Number of parameters



Verification procedure

Randomly divide data into training sample and
iInto test sample.

Select optimal set of parameters using only
training sample data.

Use the optimal set of parameters to classify test
sample data.

Calculate the error rate. Compare this error rate
with results of test sample data classification
using the other sets of parameters.




Result of verification using
Nailve Bayes Classifier
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Conclusion

Distribution contrasting technique is suitable for feature
selection.

The method combines information theory approach,
average risk estimation and uniform estimates of
empirical risk deviation from average risk.

This method allows to extract features mostly significant
for two given hypothesis testing.

The method has applications in analysis of links between
processes of different nature. For example, between
cancer mortality and non cancer morbidity

(V. V. Tsurko, A.l. Michalski, Advances in Gerontology, 2014,
10.1134/S207905701 4030084).



Thank you!

Any questions?



