Ontology as a tool for automated interpretation

Boris Mirkin

Department of Data Analysis & AI, NRU HSE, Moscow RF Department of CS, Birkbeck University of London UK

Joint work with

T. Fenner (U of London), S. Nascimento (NU Lisbon), E. Chernyak (NRU HSE)

Supported by -Research and Academic Funds of NRU HSE: «Teacher-student» 2011-14 and Research Lab Decision Choice and Analysis 2010-pr.; -grant of Portuguese Science and Technology Foundation 2007-2011 (to SN & BM)

Plenary talk at "The 16th International Conference on Artificial Intelligence: Methodology,

Outline I

Intro: an outsider bird's eye view at AI history
Hierarchical ontology / Taxonomy / Relation "…is a …"

 A system for the "vertical" computational interpretation:

Granularity levels: Concepts-themes-elements

Types of vertical interpretation

- Annotation
- Elemental query set and overrepresentation
- Thematic query set lifted to higher ranks in a taxonomy

[Developing a (fuzzy) query set]

Outline 2

Parsimoniously lifting a thematic query set (PARL)
 Application cases

 Individual gene histories and LUCA
 Representing research of organization
 Analysis of residents' complaints

 Conclusion

Outsider's view of history of Al I. Romantic Al: Turing test (1940 – 1960)

- II. Deductive AI: reasoning to automate (1960 – 1990)
- III. Inductive AI data analysis, data mining, knowledge discovery (1990 – ...)
- IV. Synthesis: Ontology (2010 …)

Outsider's view of history of Al

Romantic AI: Turing test; perceptron; machine translation (1940 – 1960)

Turing test: a joke ?

II. Deductive AI: reasoning to automate (1960 – 1990)

In spite of Gödel's theorem (?)

III. Inductive AI – data mining, knowledge discovery (1990 – ...)

Computational Intelligence (2005) versus deductive AI: (1) neural networks, (2) fuzzy sets and logics, (3) genetic and evolutionary algorithms – converging to modeling AI as an evolving phenomenon

IV. Synthesis: Ontology (2010 –)

1.

SNOMED CT, GO, ACM CCS...

Example I: SNOMED CT – A set of bio-medical hierarchical ontologies and semantic mappings among them

Systematized Nomenclature of Medicine--Clinical Terms (SNOMED CT)

 a multinational effort in computerization of all things related to health and medicine, ~311 000 terms so far

SNOMED CT is

•a clinical healthcare terminology

- a resource with comprehensive, scientifically-validated content essential for electronic health records
- a terminology that can cross-map to other international standards already used in more than fifty countries

SNOMED CT provides the core general terminology for the electronic health record (EHR) and contains more than 311,000 active concepts with unique meanings and formal logic-based definitions organized into hierarchies. When implemented in software applications, SNOMED CT can be used to represent clinically relevant information consistently, reliably and comprehensively as an integral part of producing electronic health records." IHTSDO

Hierarchies in SNOMED CT

Clinical finding/disorder **Procedure/intervention Observable entity Body structure** <u>Organism</u> <u>Substance</u> Pharmaceutical/biologic product **Specimen** Special concept Physical object Physical force Event Environment or geographical location Social context Staging and scales

Example I: SNOMED CT – A set of bio-medical hierarchical ontologies (2012)

Плавная вставка Разметка страницы Ссылки Рецензирование вид Вырезать Вырезать Саlibri (Основно + 11 - А́ А́ Аа + 1 —) Е + 1 = +	Надстройки ■ 魚↓ ¶ ▲ * ⊞ * Г₂ • • • • ↓ • • • 4	згг, АаБбВі АаБбВі АаБбВі АаБбВі АаБбВі. ер Заголовок 1 Заголовок 2 Название Подзаголо т Стили Стили	Анайтт взменить стили - Б Редактиро
Parent(s): body structure (Select a parent to make it the "Current Concept".) Action (qualifier value)	Current Col Fully Specifi Name:	ncept: ed Evaluation - action (qualifier value)]
<i>Current Concept: Evaluation - action (qualifier value)</i>	129265001	-	
Child(ren): (N=5) (Select a child to make it the "Current Concept".) Examination - action (qualifier value)	Relationshi Is a Action value) This concept is pr	ps: (qualifier <i>imitive.</i>	
Measurement - action (qualifier value) Monitoring - action (qualifier value) Spectroscopy - action (qualifier value)	Description Fully Specified Name:	is (Synonyms): Evaluation - action (qualifier value)	-
	Preferred:	Evaluation - action [208001015]	

The 2012 ACM Computing Classification System: ACM-CCS-2012

Hierarchical Taxonomy – 5-6 Layers

Example II: ACM-CCS-2012 Taxonomy – Layer One,						
14 categories						
General and reference	Information systems					
<u>Hardware</u>	Security and privacy					
	Human-centered computing					
Computer systems organization	Computing methodologies					
<u>Networks</u>	Applied computing					
Software and its engineering	Social & professional topics					
<u>Theory of computation</u> <u>Mathematics of computin</u>	Proper nouns: People, technologies and ng companies					

Example 2: ACM-CCS Taxonomy – Layer two, Maths of computing

Mathematics of computing

• Discrete mathematics

• Probability and statistics

- Statistical paradigms
 - Queueing theory
 - Contingency table analysis
 - Regression analysis
 - Time series analysis
 - Survival analysis
 - Renewal theory
 - Dimensionality reduction
 - Cluster analysis
 - Statistical graphics
 - Exploratory data analysis
- Multivariate statistics

Mathematics of computing_(cont.)

Mathematical softwareInformation theory

Mathematical analysis

- Numerical analysis
- Mathematical optimization
- Differential equations
- Calculus
- Functional analysis
- Integral equations
- Nonlinear equations
- Quadrature

•Continuous mathematics

"Interpretation": meaning (?)

 To interpret: "to explain or tell the meaning of, that is, present in understandable terms" (Merriam-Webster)

- "Explanation" must be "concise."
- Generalization: a special case of interpretation (2a) "generalize": (1) to give a general form to, (2a) to derive or induce (a general conception or principle) from particulars, (2b) to draw a general conclusion from (Merriam-Webster)

 Annotation: "a note added by way of comment or explanation" (Merriam-Webster)

Basic Computational Interpretation:

I. Build Theme-to-Element relevance matrix, say, KeyPhrase-to-Text or Motif-to-ProteinSeq or ResearchSubject-to-ResearchTeam

Annotation A(j) of

element

- 2. Build elemental query sets Q(k) for themes
- **3. Build thematic annotations A(j) for elements**

Interpretation of concept query sets III: Interpretation I: set of elements by a theme

Q

Bioinformatics:

Q – co-expressed genes, T– genes of a same function

 Taxonomy concept T Elemental query set Q
 Overrepresentation (Robinson 2011) If Prob(QT/Q) >> Prob(T), annotate Q by concept T

- Map O-T-Concept as a fuzzy topic set:
 - F.I Computation by abstract devices 0.60
 - F.3 Logics and meaning of programs 0.60
 - F.4 Mathematical logic and formal languages 0.50
 - D.I Programming languages 0.17. (Euclidean Normed)

Interpretation in Domain Taxonomy I(c) by Lifting

Interpretation of the thematic cluster: **F. Theory of computation** (With a *gap*, F2, and an *offshoot*, D3) Interpretation of thematic clusters in T by lifting Lifting penalty function

Represent the thematic clusters in ACM-CCS by higher, more general, nodes depending on the inconsistencies (Lift)

Criterion balances the number of Head Subjects (the higher the ranks, the smaller the numbers) with those of Gaps/Offshoots (the opposite) 22

Algorithmic issues I

- Cleaning the taxonomy tree of **irrelevant** nodes
- Ways to extend the fuzzy belongingness values to all the nodes (no effect on the algorithm but on results):
 - Only 0-1 constraints
 - Summing to I (on same layers)
 - Euclidean: squares summing to I (reminiscent of the wave function in quantum mechanics ~ spectral approach in finding clusters)

Algorithmic issues II

- Proceed recursively bottom-to-top
- Sum weighted gain/loss events under each of two different scenarios:
- Head Subject has been inherited from parent
- Head Subject has not been inherited from parent
- Upon reaching the root, take that with the minimum summary penalty

Lifting: Bottom-up recursion under each of two scenarios, (i) HS inherited from parent or (n) not

(G) Reconstruction of gene histories over an evolutionary tree (E. Koonin, P. Kellam et al. 2003-2007)

(Aa) representation of research activities of organizations over an ontology of the domain
 (S. Nascimento et al. 2009 -)

(Ac) Resident complaints management (J. Askarova, E. Babkin, et al., 2011-)

Reconstruction of gene histories over an evolutionary tree

• Given:

 Evolutionary tree over set of 26 mainly microbial SPECIES annotating leaves (at NCBI, USA)

- 3166 "COG"s representing individual genes
- Problem: Interpret gene histories in tree
 - Head subject= Gain of gene, Gap=Loss of gene
 - What weights to assign to events?

Reconstructed history of COG 0572 Uridine Kinase

Summary of gene histories at different gain penalties (from 0.1 to 10.0) – which to choose?

At gain penalty I, 572 gene LUCA is self-sustainable (2003)

Table 2. Gene sets of ancestral forms and counts of various events in parsimonious scenarios

depending on the gain penalty.

Gain	Number of gene (COGs)																
penalty (g)	.1	.2	al.	.4	1	.6	.7	.8	9	1	1.25	15	2	3	5	7	10
LUCA	34	98	109	132	212	214	266	285	310	\$72	53	733	956	1211	1525	1664	1725
Archaeal ancestor	390	391	427	521	663	650	732	727	750	977	982	1046	1178	1295	1508	1619	1673
Bacterial ancestor	169	193	243	283	297	415	476	506	532	773	81	<u>986</u>	1259	1582	1879	2028	2001
Horizontal transfer	13241	13001	12315	11464	9462	9312	8733	8365	831.5	5495	\$136	4238	2646	1295	368	97	13
Loss	0	45	220	512	1506	1595	1989	2259	2301	5121	5962	6872	9944	13/95	17535	19230	19947
Total events	16407	16212	15701	15142	14134	14073	13878	13790	13782	13782	13864	14276	15756	18156	21.069	22493	23126
Single scenarics	3165	3139	3164	3147	2494	3144	3166	3152	3166	1806	8	2894	2399	2387	2982	3081	3154

(Aa) Representation of activities Example: for running control

Energy network of Con Edison Company on Manhattan New-York USA (visualized by Advanced Visual Systems company) to control the energy supply by following all maintenance and repair issues on-line.

Main ingredients:

(i) District map,
(ii) Energy network units
(iii) Mapping (2) at (1).

(Aa) Representation of a Computer Science Department research activities for strategic control Similar:

- •(i') District Map: an ontology of Computer Science (CS),
- •(ii') Energy maintenance **Units**: clusters of CS research subjects being developed by members of the department,
- •(iii') **Mapping** of the research onto the ontology

Member of Department ESSA survey output: Fuzzy membership

(Ab) An example of annotating a research project

Subject cluster {C1, C2, C3, D3, F1, F3, F4} according to working a team in the department

- Lifting
- Two **Head Subjects**: probably a breakingthrough research, say, in distributed logic programming

(Ac) Resident complaints management

Coarse taxonomy
 refined, semi manually
 using a database of
 residents complaints in
 Nizhny Novgorod

In-house phrase-to-text similarity score: AST symbol's averaged conditional frequency

Suffix tree for strings **XABXAC** and **BABXAC**

annotated with substring frequencies, and the **similarity score** for string **VXACA**

Suffix	Match	Score
'VXACA'	None	0
'XACA'	'Х'->'А'->'С'	3/12 + 3/3 + 2/3=1 11/12
'ACA'	'A'->'C'	4/12 + 2/4=5/6
'CA'	'C'	2/12
'A'	Α'	4/12 ³⁷

- 2. Complaint-to-Topic suffix tree based similarity table S
- 3. Clusters over S with iK-Means (Mirkin
- 2012) Anomalous patterns one-by-one
- 4. Removal of small and large clusters
- 5. Parsimoniously lifting remaining clusters

Figure caption:

Cluster mapped to **I. Housing**

- I.2.I. Hot water problems
- I.2.2. Cold water problems
- I.2.3. Water meter problems

(all three are parts of **I.2. Water**

Supply)

I.II.2. Public water pump (part of I II IIrban landscaping and

c) Resident complaints

management 3 Interpretation and conclusions

Observation: Clusters are mapped to overly high ranks

Since the housing and communal services are structured according to technology (water, electricity, public transportation, etc.),

whereas complaints are structured according to living conditions, the latter are frequently at odds with the former:

Organize municipal centers to listen to residents and form multiple-address solutions (this already is being organized in Moscow, by themselves: no our advice) 39

Conclusion I

An attempt at a system for computational interpretation – Basic vertical:

- Annotating a single element
- Annotating a granular query set by a single concept
- Annotating a thematic query set within a taxonomy*
- *Partly described in

B. Mirkin (2012) Clustering: A Data Recovery Approach, CRC Press.

Conclusion II Future work **Building taxonomies** "Horizontal" interpretation Moving to maximum likelihood (via estimation of probabilities using PARL) Text analysis using more data (string + "grammar" + net) Apply to texts, medicine records, documents Modeling cognitive systems

Similarity between ACMC subjects: example

ACMC subjects: i, ii, iii, iv, v, vi

Chosen subject memberships for four members

i	.6			.2	
ii	.4		.2	.2	
iii		.2	.4	.2	
iv		.3	.4	.2	
v		.5		.2	

vi

2/5 3/5 3/5 5/5 – member weights weight = number_of_subjects / max_number_of_subjects

Similarity between ACMC subjects: example 2

i
$$(.36.24000)$$

ii $(.24.16000)$
ii $(.24.16000)$
ii $(.24.16000)$
ii $(... = (..$

not_diagonal_mean =0.0874

+

Additive fuzzy clustering

Observed:

• Similarity B=(b_{ij}), i,j∈I

To be found:

• **C**luster membership u=(u_i)

• Intensity $\mu > 0 \Rightarrow$ Fuzzy cluster similarity A= $\mu^2 u u^T$ K clusters:

 $B = A_g + A_1 + A_2 + \dots + A_K + E$ (g- universal background)

 **$$A_k$$
, **B'-** A_k **>** \Rightarrow min $_{\mu,u}$ one-by-one**

Additive fuzzy clustering

- Model: Similarity B summarizes:
 - Background cluster g (all entities)
 - K fuzzy clusters (K unknown)

• residuals E

$$B = A_g + A_1 + A_2 + ... + A_K + E$$

E to be least-squares minimized over unknown clusters

Method: One cluster at a time • $Min_{u, \xi} \sum_{t,t' \in T} (w_{tt'} - \xi u_t u_{t'})^2 \quad \Leftrightarrow$

- Equivalent to Rayleigh quotient
 Max uWu^T/(u^Tu)
- Spectral approach: find max eigenvalue and its vector, adjust the latter to fuzzy membership