Semi-supervised Image Segmentation

Gergana Angelova Lazarova
PhD Student at Sofia University, Bulgaria
part-time teaching assistant
Semi-Supervised Learning (SSL)

- Labeled examples
 \[D_1 = \{(x_i, y_i)\}_{i=1}^{nl} \]
- Unlabeled examples
 \[D_2 = \{x_j\}_{j=1}^{mu} \]
- Data
 \[D = D_1 \cup D_2 \]

- Usually few labeled examples are present, but we have access to large amounts of unlabeled examples
- Unlabeled examples are cheap to collect
Semi-Supervised Image Segmentation

- **Problem formulation: Image Segmentation**
 - partitioning a digital image into multiple segments
 - Classification - assign a label to every pixel in an image

- **Approach: Semi-Supervised Learning**
 - Few labeled pixels – a teacher labels them
 - Use unlabeled pixels for learning

- **An innovative approach for semi-supervised image segmentation is proposed**
 - modification of the standard co-training algorithm
Multi-view learning

- Multiple sources of data
- $X = (X_1, X_2)$, X_1 and X_2 represent feature sets
- Combining the results of the two sources
- Examples
 - People recognition – combining face recognition, voice recognition, etc.
 - Web-page classification – words on the web pages, hyperlinks pointing to the web pages
 - Image Segmentation – RGB values, coordinates of the pixels
Co-Training – original algorithm

- Two views: $X = (X_1, X_2)$
- Each view (set of features) is sufficient for learning
- The two views (feature sets of each instance) are conditionally independent given the class.
 - $P(X_1|Y, X_2) = P(X_1|Y)$
 - $P(X_2|Y, X_1) = P(X_2|Y)$
Co-Training – original algorithm

- Learn L1 using U1, Learn L2 using U2
- Label all unlabeled examples
 - Probabilistically label all unlabeled examples using L1. Add L1’s most confident examples to U2
 - Probabilistically label all unlabeled examples using L2. Add L2’s most confident examples to U1
- Go to 1 until there are no more unlabeled examples or some other stop criterion is met
Multi-View Teaching Algorithm (MTA)

- Two views: $X = (X_1, X_2)$
- Modification of the standard Co-Training Algorithm
- One of the views is weaker than the other and may worsen the final result
- Improve only the weaker view and combine the results
- The two views (feature sets of each instance) are conditionally independent given the class.
 - $P(X_1|Y, X_2) = P(X_1| Y)$
 - $P(X_2|Y, X_1) = P(X_2| Y)$
Multi-View Teaching Algorithm (MTA)

- Learn L1 based on view1.
- Add more labeled examples to L2
 - For each example x_i calculate its most probable classification
 - For each class y_j find the most confident examples and if they exceed some threshold add them to U2
 - Learn L2 based on view 2, using also the new labeled by L1 examples
- Combine the results of the two views
Combining the Views

- Multiply the results of the separate learners

\[P(y_j \mid x_i) = P(y_j \mid x_i, \theta_1)P(y_j \mid x_i, \theta_2) \]

\[\arg\max_{y_j} P(y_j \mid x_i, \theta_1)P(y_j \mid x_i, \theta_2) = \]

\[\arg\max_{y_j} \log P(y_j \mid x_i, \theta_1) + \log P(y_j \mid x_i, \theta_2) \]
Learners/Classifiers used

- Naive Bayes Classifier
- Supervised Classifier based on Multivariate Normal Distribution

Aim:
- Compare Semi-supervised MTA, based on Naive Bayes Classifier to its supervised equivalent
- Compare Semi-supervised MTA, based on Multivariate Normal Distribution to its supervised equivalent
This classifier is a simple probabilistic classifier and relies on the preposition that the attributes are independent.

\[P(y_j)P(x_i \mid y_j) = P(y_j) \prod_{k=1}^{m} P(a_k \mid y_j) \]

In order to classify new examples it chooses the hypothesis that is most probable. The corresponding classifier is the function \(f^* \) defined as:

\[f^* = \arg \max_{y_j} P(y_j)P(x_i \mid y_j) \]
Supervised learning, based on Multivariate Normal Distribution

- The multivariate normal distribution is often used to describe any set of correlated real-valued random variables each of which clusters around a mean value.

\[
P(D \mid \theta) = \prod_{i=1}^{l} P(x_i, y_i \mid \theta) = \prod_{i=1}^{l} P(y_i \mid \theta)P(x_i \mid y_i, \theta) \\
P(y_i \mid x_i, \theta) = \frac{P(y_i)P(x_i \mid \theta, y_i)}{P(x_i)} = \frac{P(y_i)N(x_i, \mu_y, \Sigma_y)}{P(x_i)} \\
N(x, \mu_y, \Sigma_y) = \frac{1}{\frac{D}{2}(2\pi)^{\frac{1}{2}}} e^{-\frac{1}{2} \left((x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y) \right)}
\]
Experimental Framework

- Monte Carlo cross-validation
- Construction of the training and test sets:
 - The training set consists of a fraction of labeled examples from the original dataset. Randomly a small amount of pixels are chosen, they are added to D1. The rest of the instances have their classifications removed. These unlabeled examples are added to D2. A final training set is constructed: D = D1 U D2.
 - The test set contains all the examples in D2.
Experimental Results

Fig. 1. (a) - original image, (b) – desired segmentation

Fig. 2. (a) - original image, (b) – desired segmentation
Experimental Results

Fig. 3. (a) - original image, (b) – desired segmentation

- Multi-view teaching algorithm based on Naïve Bayes Classifiers (MTA) vs Supervised Naïve Bayes Classifier (NB)
- Multi-view teaching algorithm based on MND-SL (MTA-MD) vs Supervised MND - SL (MD)
MTA vs. Supervised Naïve Bayes Classifier

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>63.30%</td>
<td>76.23%</td>
<td>85.44%</td>
<td>89.57%</td>
<td>90.33%</td>
<td>92.37%</td>
</tr>
<tr>
<td>MTA</td>
<td>68.62%</td>
<td>81.30%</td>
<td>88.14%</td>
<td>90.74%</td>
<td>91.24%</td>
<td>92.51%</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the two algorithms, based on the number of labelled pixels (Image 1)
MTA vs. Supervised Naïve Bayes Classifier

MTA vs NB – classification accuracy comparison, based on the amount of labeled examples
MTA vs. Supervised Naïve Bayes Classifier

<table>
<thead>
<tr>
<th></th>
<th>MTA</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>90.74%</td>
<td>89.57%</td>
</tr>
<tr>
<td>Image 2</td>
<td>80.76%</td>
<td>78.82%</td>
</tr>
<tr>
<td>Image 3</td>
<td>90.10%</td>
<td>89.12%</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the two algorithms, based on 16 initial labeled examples
MND-SL (MTA-MD) vs Supervised MND - SL (MD)

<table>
<thead>
<tr>
<th></th>
<th>MTA-MD</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>84.36%</td>
<td>79.22%</td>
</tr>
<tr>
<td>Image 2</td>
<td>79.14%</td>
<td>73.74%</td>
</tr>
<tr>
<td>Image 3</td>
<td>86.02%</td>
<td>80.18%</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the two algorithms, 16 initial labeled examples
Thank you!
Благодаря за вниманието!
どうもありがとうございます！